Dane adresowe
Wydawnictwo Aksjomat
ul. Wita Stwosza 1/7
87-100 Toruń
tel: +48 56 6226941
wydawnictwo@aksjomat.torun.pl
sklep: sklep@aksjomat.torun.pl

Konto: Santander Bank Polska S.A.
40 1090 1506 0000 0000 5002 0903
Dostawa

Wysyłki realizowane są za pośrednictwem firm GLS / InPost / Pocztex.

Kurier GLS
z przedpłatą na konto / pobranie
14,00 zł / +2,50 zł
(powyżej 150 zł / 180 zł
przesyłka GRATIS)

Kurier InPost / Paczkomat InPost
z przedpłatą na konto / pobranie

13,50 zł / +3,00 zł
(powyżej 150 zł przesyłka GRATIS)

Kurier Pocztex
z przedpłatą na konto / pobranie
16,50 zł / +2,50 zł
(powyżej 150 zł
przesyłka GRATIS)

Dostawa do Punktu
z przedpłatą na konto / pobranie
14,50 zł / +2,50 zł
(powyżej 150 zł
przesyłka GRATIS)

Więcej szczegółów : ...czytaj więcej...

Informacja

Dla szkół oraz grup przygotowaliśmy specjalne promocje i upusty

Serdecznie zapraszamy do kontaktu telefonicznego +48 56 6226941

od poniedziałku do piątku w godzinach 8:00 - 15:00.

Miniatury matematyczne 91

Dostępność: na stanie
Wysyłka w: 24 godziny
Cena: 23,50 zł

Cena regularna:

23.50
ilość szt

towar niedostępny

dodaj do przechowalni

Opis

Czym zajmuje się matematyka?

Większości uczniów matematyka kojarzy się z poleceniem Oblicz (oblicz pole, wysokość, prędkość, prawdopodobieństwo . . . ) lub z pytaniem Ile? stojącym za poprzednim poleceniem (ile lat, ile trójkątów, ile liczb itp). I nic dziwnego. Tak sformułowane są niemal wszystkie zadania szkolne. Jednak zwykle nie tak wyglądają problemy, przed którymi staje zawodowy matematyk. Te bowiem są zwykle bardziej ogólne i abstrakcyjne. Zazwyczaj przypominają dobrze znane z różnych zawodów matematycznych zadania typu Udowodnij, że. . . . Stoi więc za nimi pytanie Dlaczego?.

Skąd jednak wiedzieć, co udowodnić? Owszem, istnieją w każdej dziedzinie pewne przypuszczenia, których do tej pory nie udało się ani udowodnić, ani obalić. Są to tak zwane hipotezy. Te najbardziej znane noszą nazwiska swoich autorów. Bywa ją takie, które pozostają otwarte przez setki lat.

Znacznie częściej jednak dowód poprzedza znalezienie nowej zależności. Często przyjmuje ona postać numeryczną (jak chociażby w twierdzeniu Pitagorasa), ale nie zawsze. Ciekawszym przypadkiem jest zauważenie, że dwa z pozoru różne obiekty są — przynajmniej pod pewnymi względami — podobne bądź wręcz takie same. Czasami zamiast szukać zależności między znanymi obiektami, szuka się nowych obiektów o pewnych właściwościach.

Wszystko to można zobaczyć w trzech prezentowanych miniaturach. Pierwsze dwie dotyczą kombinatoryki, czyli działu matematyki zajmującego się skończonymi strukturami. Najprostszą taką strukturą jest zbiór. W przypadku braku dalszych informacji jedynym sensownym pytaniem, jakie możemy zadać, jest pytanie o liczbę elementów. Znacznie ciekawiej wygląda sytuacja, gdy do zbioru dodamy dodatkowe informacje. Dodając do zbioru informację o pewnego rodzaju powiązaniach między jego elementami, otrzymujemy graf.

W drugiej miniaturze autorki zajmują się zadaniami dotyczącymi znajomości w pewnych grupach ludzi. Jest to właśnie taki sposób powiązania osób tworzących zbiór, który czyni z niego graf. Choć więc słowo graf w miniaturze nie pada, to w istocie jest ona poświęcona przykładom pytań, jakie możemy rozważać dla grafów.

Teoria grafów jest przykładem dziedziny w której łatwo można sformułować pytania, na które matematyka w dalszym ciągu nie zna odpowiedzi. Wnioskiem z jednego z pierwszych zadań jest, że w każdej grupie złożonej z przynajmniej 6 osób znajdą się trzy, które się wzajemnie znają lub trzy osoby, wśród których nie ma znajomych. W miarę łatwo można udowodnić coś ogólniejszego. Dla każdej liczby dodatniej n w dostatecznie dużej grupie osób znajdzie się n osób, które się wzajemnie znają lub n osób, wśród których nie ma żadnych znajomych. Pytanie, jak duża musi być ta grupa. Można pokazać, że dla n = 4 potrzeba i wystarczy 18 osób. Ale już dla n = 5 dokładna liczba potrzebnych osób nie jest znana. Wiadomo, że 42 osoby to zbyt mało, a 46 z pewnością wystarcza. Czy wystarcza ją 43 osoby, a może 44? Nie wiadomo.

Na pierwszy rzut oka może wydawać się zaskakujące, że nawet przy pomocy komputera nie można rozstrzygnąć, która z tych bądź co bądź niezbyt dużych liczb jest właściwa. Problemem jest liczba wszystkich możliwych układów znajomości w takich grupach, co powoduje, że przejrzenie wszystkich możliwości jest fizycznie niemożliwe.

W pierwszej miniaturze pojawia ją się jeszcze bardziej skomplikowane struktury kombinatoryczne związane z pewnymi grami. Pierwszymi grami, którymi zainteresowali się matematycy, były gry hazardowe, w których rolę odgrywa losowość. Tu jednak autor zajmuje się grami w swej naturze „kombinatorycznymi”, jak szachy czy kółko i krzyżyk, a więc grami, w których gracze kolejno wykonują pewne ruchy, wybierając jedną z być może wielu, ale skończenie wielu możliwości.

Mottem miniatury jest zdanie Henriego Poincare, słynnego francuskiego matematyka z przełomu XIX i XX wieku Matematyka jest sztuką nadawania takich samych nazw różnym rzeczom. Badając przykłady różnych gier, zobaczymy, jak matematyka prowadzi do odkrycia wspólnej struktury w na pozór różnych rzeczach.

Ostatnia miniatura poświęcona jest figurom geometrycznym, które — jak koło — we wszystkich kierunkach mają tę samą szerokość. Autor koncentruje się przede wszystkim na znajdowaniu przykładów takich figur. Ich świat okazuje się zaskakująco bogaty.

Dane techniczne

Rodzaj oprawy okładka miękka
Autor Anna Gołębiewska, Magdalena Wysokińska-Pliszka, Witold Kraśkiewicz, Mateusz Topolewski
ISBN 9788366838581
Ilość stron 64
Format B5
Waga (w gramach) 135

Bezpieczeństwo

Produkty powiązane

Opinie o produkcie (0)

do góry
Sklep jest w trybie podglądu
Pokaż pełną wersję strony
Sklep internetowy Shoper.pl