ul. Wita Stwosza 1/7
87-100 Toruń
Konto: Santander Bank Polska S.A.
40 1090 1506 0000 0000 5002 0903
Wysyłki realizowane są za pośrednictwem firm GLS / InPost / Pocztex.
Kurier GLS
z przedpłatą na konto / pobranie
14,00 zł / +2,50 zł
(powyżej 150 zł / 180 zł przesyłka GRATIS)
Kurier InPost / Paczkomat InPost
z przedpłatą na konto / pobranie
13,50 zł / +3,00 zł
(powyżej 150 zł przesyłka GRATIS)
Kurier Pocztex
z przedpłatą na konto / pobranie
16,50 zł / +2,50 zł
(powyżej 150 zł przesyłka GRATIS)
Dostawa do Punktu
z przedpłatą na konto / pobranie
14,50 zł / +2,50 zł
(powyżej 150 zł przesyłka GRATIS)
Więcej szczegółów : ...czytaj więcej...
Dla szkół oraz grup przygotowaliśmy specjalne promocje i upusty
Serdecznie zapraszamy do kontaktu telefonicznego +48 56 6226941
od poniedziałku do piątku w godzinach 8:00 - 15:00.
Miniatury matematyczne 77
Opis
W kolejnej miniaturze powracamy do rozważań związanych z polem figury. Nie będziemy badali wzorów na pola poszczególnych wielokątów. Problem ten jest trudny, między innymi ze względu na wczesny etap matematycznej nauki. Z tego powodu zajmiemy się porównywaniem pól wielokątów. Oczywiście nie będziemy zajmować się pogłębioną analizą samego pojęcia pola. Potraktujemy je w naturalnym i nieco intuicyjnym rozumieniu, tak jak to czyni się w trakcie początkowej nauki szkolnej matematyki. Zajmiemy się szczególnie polem wielokąta, głównie problemami wynikającymi ze słynnego twierdzenia Farkasa Bolyaia i Paula Gerwiena, które odkryli niezależnie w roku 1833.
Jeżeli dwa wielokąty mają równe pola, to zawsze można jeden w nich podzielić na skończoną liczbę takich wielokątów, aby z nich można było ułożyć drugi wielokąt.
Twierdzenie to pozwala porównywać pola wielokątów bez obliczania tych pól. Warto zauważyć, że aby stwierdzić, że dwa wielokąty mają równe pola, wystarczy podzielić każdy z tych wielokątów na mniejsze wielokąty, tak by każdy z tych podziałów miał tyle samo elementów i by każdy wielokąt jednego podziału można nałożyć na pewien wielokąt drugiego podziału, tak by się pokrywały i by te wielokąty w parach wyczerpywały wszystkie wielokąty w obydwu podziałach.
Oznacza to, iż wziąwszy na przykład kwadrat wraz z danym jego podziałem możemy opisywać wielokąty o tym samym polu, dla których istnieje podział złożony z takich samych wielokątów jak podział kwadratu. Czasami te problemy pojawiają się w zadaniach zabawowych, chociaż wcale technicznie niełatwych, przykładem takich problemów są tangramy Będziemy rozważać wielokąty, przeważnie w miarę proste, wraz
z ich podziałem i starać się będziemy opisywać wielokąty mające taki sam podział. Zwracamy uwagę na fakt, iż w początkowym etapie nauki matematyki przy wyprowadzaniu wzorów na pola nieco bardziej złożonych wielokątów korzystaliśmy z metody podziału takich wielokątów na mniejsze wielokąty i składaliśmy z nich wcześniej poznane wielokąty. Warto więc przećwiczyć tę metodę na bardziej skomplikowanych przykładach, tym bardziej że z podobnymi problemami spotykamy się na wielu konkursach matematycznych. Często układane wielokąty z elementów danego podziału przypominają figury lub postacie spotykane w innych sytuacjach – postacie zwierząt, litery, figury szachowe itp – wówczas nie podkreślamy tego, że budujemy wielokąty. Podobnie w odpowiedziach i w rozwiązaniach zadań nie staramy się za każdym razem zachowywać wymiarów poszczególnych elementów podziału, głównie zwracamy uwagę na kształt otrzymywanych wielokątów, chociaż powinniśmy budować wielokąty o danym polu W odpowiedziach i rozwiązaniach, szczególnie w rozdziałach II oraz III, często nie uzasadniamy poprawności odpowiedzi tzn. czy posiadają one żądane własności. Ograniczamy się tylko do manualnego sprawdzenia spełnienia warunków rozwiązania.
Na końcu miniatury dodajemy szereg kartek z umieszczonymi na nich wielokątami, które wcześniej spotkaliśmy w omawianych zadaniach Proponujemy Czytelnikowi sprawdzenie przy ich pomocy prawdziwości zamieszczonych odpowiedzi i być może poszukanie innych rozwiązań tych zadań.
Dane techniczne
Rodzaj oprawy | okładka miękka |
Autor | Zbigniew Bobiński, Piotr Nodzyński, Mirosław Uscki |
ISBN | 9788366838147 |
Ilość stron | 72 |
Format | B5 |
Waga (w gramach) | 160 |